GUJARAT TECHNOLOGICAL UNIVERSITY

MECHANICAL ENGINEERING (19) FLUID POWER ENGINEERING

SUBJECT CODE: 2151903 B.E. 5th SEMESTER

Type of course: Fundamental

Prerequisite: Elements of Mechanical Engineering

Rationale: The course is designed to provide the detailed understanding of fluid power and different major

equipment which can produce power from fluid.

Teaching and Examination Scheme:

Tea	ching Sc	heme	Credits	Examination Marks						
				Theory Marks		Practical Marks			Total	
L	T	P	C	ESE	PA (M)		PA (V)		PA	Marks
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	5	70	20	10	20	10	20	150

Content:

Sr.	Content	Total	% Weightage
No.		Hrs	
1	Hydropower Plant: Introduction, Major applications of hydropower plant,	2	5
	Classification of hydropower plant, Essential components of hydropower		
	plant, Advantages and disadvantages of hydropower plant, selection of site for		
	a hydropower plant		
2	Impact of Jet: Introduction, Force exerted on stationary plate held normal and	7	20
	inclined to jet, Force exerted on curved plate, force exerted on moving plate		
	held normal and inclined in direction of moving jet, Force on a plate when		
	vane is moving in direction of jet, jet striking on curved vane tangentially at		
	one tip and leaving at other end, jet propulsion in ships		
3	Hydraulic Turbines: Introduction, Classification of turbines, Impulse and	7	20
	reaction turbines, construction, working and performance of Pelton, Francis		
	and Kaplan Turbines, Draft tube, Governing of hydraulic turbines, Cavitation		
4	Centrifugal Pumps: Pump classification and selection criterion, Centrifugal	6	12
	pumps, Velocity vector diagrams, Pump losses and efficiencies, Net positive		
	suction head, Pressure rise in impeller, Characteristic curves of centrifugal		
	pumps, priming, maximum suction limit - minimum starting speed to deliver		
	the discharge, Multistage pumps, cavitation, pump selection		
5	Reciprocating Pumps: Operation of Reciprocating pumps, discharge co-	3	8
	efficient, volumetric efficiency, slip, work done and power required to drive		
	reciprocating pumps, effect of air vessels, effect of friction on performance of		
	reciprocating pump		
6	Reciprocating Compressors: Construction and working, Multistage	3	5

	conditions for minimum work, Intercooling, Efficiency and control of air		
	compressors		
7	Rotary Compressors: Introduction, Classification, roots blower, Vane type,	3	5
	Screw compressor, Scroll compressor		
8	Centrifugal Compressors: Essential parts, Static and total head properties,	3	5
	Velocity diagram, Degree of reaction, surging and choking, Losses in		
	centrifugal compressor		
9	Axial Flow Compressors: Construction of an axial flow compressor, Aerofoil	3	5
	blading, Lift and drag, Performance characteristics		
10	Hydraulic Machines: Construction and working of hydraulic press,	5	15
	Hydraulic accumulator, Hydraulic intensifier, Hydraulic crane, Hydraulic jack,		
	hydraulic lift, Hydraulic ram, Fluid couplings, Fluid torque converter and air		
	lift pump		

Suggested Specification table with Marks (Theory):

Distribution of Theory Marks						
R Level	U Level	A Level	N Level	E Level	C Level	
10	15	25	25	15	10	

Legends: R: Remembrance; U: Understanding; A: Application, N: Analyze and E: Evaluate C: Create and above Levels (Revised Bloom's Taxonomy)

Note: This specification table shall be treated as a general guideline for students and teachers. The actual distribution of marks in the question paper may vary slightly from above table.

Reference Books:

- 1. Fluid Mechanics and Fluid Power Engineering by D.S. Kumar, S.K. Kataria & Sons.
- 2. Fluid Power Engineering by R.N. Patel and V.L. Patel Mahajan Publication
- 3. Fluid Mechanics and Hydraulic Machines by R.K. Bansal, Laxmi Prakashan.
- 4. Fluid Mechanics and Hydraulic Machines by R.K. Rajput, S.Chand & Co.
- 5. Turbines, Compressors and Fans by S.M. Yahya., TMH Publishers
- 6. Fluid Mechanics and Turbomachines by Das, Madan Mohan, PHI Lerning

Course Outcome:

After learning the course the students should be able to:

- Learn the benefits and limitations of fluid power compared with other power transmission technologies.
- Understand the operation and use of different hydraulic machines like hydraulic crane, fluid coupling and fluid torque convertor etc.
- Formulate and analyze models of hydraulic components.
- Design and predict the performance of fluid power components.

List of Experiments:

- 1. To study about hydropower plant.
- 2. To Verify Impulse-momentum principle for impact of jet on stationary vane.
- 3. Performance test on Pelton turbine.
- 4. Performance test on Kaplan turbine.
- 5. Performance test on Francis turbine.
- 6. Performance test on Centrifugal pump.
- 7. Performance test on Reciprocating pump.

- 8. Performance test on Reciprocating compressor.
- 9. To study the constructional details of axial flow compressor and draw its characteristics curve.
- 10. Performance test on Centrifugal compressor.
- 11. Performance test on Hydraulic ram.
- 12. To study about hydraulic machines.

Design based Problems (DP)/Open Ended Problem:

- 1. Develop a working model of hydraulic car lift.
- 2. Develop a working model of hydraulic crane.
- 3. Develop a working model of hydraulic turbine (Pelton, Francis and Kaplan).
- 4. Study about Hydraulics used in Airplane/Jet plane.
- 5. Study about Optimal selection of Turbines for Hydroelectric power plant.

Major Equipment:

- 1. Test rig of Pelton turbine
- 2. Test rig of Kaplan turbine
- 3. Test rig of Francis turbine
- 4. Test rig of Centrifugal pump
- 5. Test rig of Reciprocating pump
- 6. Test rig of Centrifugal compressor
- 7. Test rig of Reciprocating compressor
- 8. Impact of jet apparatus
- 9. Test rig of Hydraulic ram

List of Open Source Software/learning website:

- 1. http://nptel.ac.in/
- 2. http://www.nfpa.com/

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.