GUJARAT TECHNOLOGICAL UNIVERSITY

ELECTRONICS (10) / ELECTRONICS & COMMUNICATION (11) /INSTRUMENTATION & CONTROL (17) ELECTRICAL MACHINES SUBJECT CODE: 2131005 B.E. 3RD SEMESTER

Type of course: Engineering Science (ELECTRICAL)/(INTERDISCIPLINARY)

Prerequisite: Fundamentals of Electrical Engineering

Rationale: NA

Teaching and Examination Scheme:

Tea	aching Scl	heme	Credits	Examination Marks						Total
L	Т	Р	С	Theory Marks		Practical Marks			Marks	
				ESE	PA (M)		PA (V)		PA	
				(E)	PA	ALA	ESE	OEP	(I)	
3	0	2	4	70	20	10	20	10	20	150

Contents:

Sr. No.	Subject Content	Hours	Module Weightage
1.	Transformers:	8	Weightage 18
1.	 Single Phase Transformer: Working principle, Construction, types, EMF equation, Transformer on no load and on load, vector diagram, exact and approximate equivalent circuit, O.C & S.C.test on transformer, regulation of transformer, losses & efficiency, condition for maximum efficiency, Allday efficiency, Efficiency curve, Sumpner's test, Auto transformer, Saving of conductor material, Parallel operation, Conditions, Parallel with equal and unequal voltage ratio. 3 Phase transformers: Construction, connections, Scott connection, V-V Connection, Instrument transformers, Current transformers and potential 	ð	10
	transformers.		
2.	Induction Machines: 3 Phase induction motor: Construction, types, rotating magnetic field, principle of operation, slip, frequency of rotor current, rotor emf, rotor current, expression for torque, conditions for maximum torque, torque slip characteristics, starting torque in squirrel cage and slip ring motors, effect of change in supply voltage on torque, slip and speed, relation between full load torque and maximum torque, Power stages in induction motor, vector diagram and equivalent circuit, circle diagram, construction and calculation, speed control of 3 phase motor, starting methods for 3 phase induction motor. Single phase motor:	10	22

Total	48Hrs	100
lines, comparison of various distribution systems, load power factor improvem techniques.		100
constants, Voltage regulation, Ferranti effect, efficiency of transmission line.3-phase 3-wire and 3-phase 4-wire distribution system, feeders, distributors, m		
Classification of transmission lines, transmission line parameters, AB	CD	
like load factor, diversity factor, plant utilization factors etc.		
Operation of different power plants using block diagram-different terminolog		20
5 Basic of Power transmission and distribution	10	20
point and 4 point starter, speed control methods, swinburn's and break test of shunt motor.	ac	
characteristics, operating characteristics of dc motor, torque developed, starting	-	
DC Motor: Working principle, voltage equation, condition for maximum pow		
characteristics of separately excited and self excited dc generator.		
and compensating winding, commutation, methods of improving commutati	on,	
excitation, losses condition for maximum efficiency, armature reaction, interpo	oles	
DC Generator: Construction features, emf equation of dc generator, methods	s of	
4. DC Machines:	10	20
Basic principle, methods of starting, application.		
Synchronous motor:		
synchronous impedance method, mmf method, ZPF method, parallel operati synchronization of alternator.	.011,	
distribution factor, emf equation, alternator on load, voltage regulati		
3. Synchronous Machine: Alternator, Basic principle, construction, pitch fac		20
equivalent circuit, types of single phase motor		•
Double revolving field theory, starting methods, no load and block rotor t	est,	

Reference Books:

- 1. Text of Electrical Technology; Vol -2; B. L. Theraja, and A. K. Theraja; S. Chand Publication
- 2. Electrical machines BY AshfaqHussain; Dhanpatrai and Co.
- 3. Principles of Electrical power systems by J. B. Gupta
- 4. Generalised theory of rotating machines By P S Bhimra

Course Outcome:

After learning the course the students should be able to :

- Understand working principle, performance, control and applications of AC, DC Machines and Transformer.
- Carry out basic experiments on AC, DC machine and Transformer.
- Identify, formulate and solve AC, DC machine and Transformer related problems.
- Understand the working and performance analysis of Transmission and Distribution of power.

List of Experiments:

- 1. To operate two single phase transformers of different KVA ratings in parallel and plot the variation of currents shared by each transformer versus load current.
- 2. To perform Open Circuit and Short circuit Test on a transformer and find its efficient and regulation.
- 3. Speed control of DC Shunt Motor using a) Armature control and b) field control methods

- 4. To obtain Magnetizing Characteristics, Internal & External Characteristic of Self Excited DC Shunt Generator. Also obtain the critical filed resistance of the machine from magnetizing Characteristics.
- 5. To conduct direct load test on a D.C. compound generator with a) Shunt field alone b) Cumulative and differential compounding for short and long shunt connections.
- 6. To obtain Speed-Torque characteristics of DC Series Motor
- 7. To obtain Speed-Torque characteristics of DC Shunt Motor.
- 8. To study different starters of D. C. motor.
- 9. To study different starters of three phase induction motor
- 10. To perform No load and Block rotor test on induction motor and plot equivalent circuit
- 11. To Study the effect of Inserting resistance on rotor of Slip ring induction motor.
- 12. To draw the V curves for synchronous machine
- 13. To find the voltage regulation of synchronous machine
- 14. To study capacitor start and capacitor run induction motor
- 15. Find Voltage regulation and efficiency of Medium transmission line
- 16. Find Voltage regulation and efficiency of Long transmission line
- 17. To study various power factor improvement methods
- 18. To study the block diagram of various power plants

Design based Problems (DP)/Open Ended Problem:

- 1. To find the applications of various single phase/ three AC and DC motors
- 2. Design capacitor bank to improve the load power factor
- 3. Design electrical power distribution system to achieve priscribed voltage regulation

Major Equipments:

Transformer, Single phase and three phase induction motor, synchronous machine,

List of Open Source Software/learning website:

Web-based tools for design:

- http://www.fairchildsemi.com/support/design-tools/power-supply-webdesigner/
- http://www.ti.com/lsds/ti/analog/webench/overview.page

Circuit Lab:

- https://www.circuitlab.com/editor/

Open source Math Tools:

- http://maxima.sourceforge.net/
- http://www.sagemath.org/
- http://www.scilab.org/
- http://www.gnu.org/software/octave/

Learning website

- <u>http://www.electrical-engineering-portal.com/</u>
- http://nptel.iitm.ac.in/courses.php

ACTIVE LEARNING ASSIGNMENTS: Preparation of power-point slides, which include videos, animations, pictures, graphics for better understanding theory and practical work – The faculty will allocate chapters/ parts of chapters to groups of students so that the entire syllabus to be covered. The power-point slides should be put up on the web-site of the College/ Institute, along with the names of the students of the group, the name of the faculty, Department and College on the first slide. The best three works should submit to GTU.